Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Linewidth Enhancement Factor and Dynamical Response of an Injection-Locked Quantum-Dot Fabry-Perot Laser at 1310nm

Identifieur interne : 003D84 ( Main/Repository ); précédent : 003D83; suivant : 003D85

Linewidth Enhancement Factor and Dynamical Response of an Injection-Locked Quantum-Dot Fabry-Perot Laser at 1310nm

Auteurs : RBID : Pascal:10-0430704

Descripteurs français

English descriptors

Abstract

This work investigates the linewidth enhancement factor (alpha-factor) and stability of an optically-injected InAs/InGaAs quantum-dot Fabry-Perot laser. Using the injection-locking technique, the above threshold alpha-factor is measured to be as low as 0.6 at 1.3X the threshold current. The below threshold alpha-factor is also measured using the Hakki-Paoli technique. The measured alpha-factor values are used to simulate the dynamic response (stable locking, period-one, period-doubling, or chaos) in the context of single-mode rate equations under zero-detuning injection conditions for external injected power ratios ranging from -11 dB to +1 5dB and slave current bias levels of 1.3X, 2X, and 2.6X threshold. Legacy literature has shown that optically-injected diode lasers typically follow the period-doubling route into a chaotic region as the injection level is increased. Simulations show that at 2X the threshold current, a small region of period-one operation will be observed followed by stable-locking as the injection ratio is increased. This predominantly stable behavior is driven largely by the low alpha-factor. Experimental results support this prediction, where under zero-detuning conditions, only unlocked and stable-locking operation is observed. Experimentally, period-one operation was not observed at a slave laser bias current of 2X threshold, as it was predicted to occur below an external power ratio of -20 dB, a level which was not attainable in this work. Such findings suggest that a quantum-dot device can be employed in an optically-injected configuration for photonic tunable-clock applications.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:10-0430704

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Linewidth Enhancement Factor and Dynamical Response of an Injection-Locked Quantum-Dot Fabry-Perot Laser at 1310nm</title>
<author>
<name sortKey="Pochet, M" uniqKey="Pochet M">M. Pochet</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for High Technology Materials, University of New Mexico</s1>
<s2>Albuquerque, NM 87106</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Albuquerque, NM 87106</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Naderi, N A" uniqKey="Naderi N">N. A. Naderi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for High Technology Materials, University of New Mexico</s1>
<s2>Albuquerque, NM 87106</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Albuquerque, NM 87106</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Terry, N" uniqKey="Terry N">N. Terry</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>US Air Force Research Laboratory, WPAFB</s1>
<s2>OH 45433</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kovanis, V" uniqKey="Kovanis V">V. Kovanis</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>US Air Force Research Laboratory, WPAFB</s1>
<s2>OH 45433</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lester, L F" uniqKey="Lester L">L. F. Lester</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for High Technology Materials, University of New Mexico</s1>
<s2>Albuquerque, NM 87106</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Albuquerque, NM 87106</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">10-0430704</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0430704 INIST</idno>
<idno type="RBID">Pascal:10-0430704</idno>
<idno type="wicri:Area/Main/Corpus">003D39</idno>
<idno type="wicri:Area/Main/Repository">003D84</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0277-786X</idno>
<title level="j" type="abbreviated">Proc. SPIE Int. Soc. Opt. Eng.</title>
<title level="j" type="main">Proceedings of SPIE, the International Society for Optical Engineering</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Binary compounds</term>
<term>Fabry-Perot resonators</term>
<term>Gallium Arsenides</term>
<term>Indium Arsenides</term>
<term>Injection locking</term>
<term>Laser diodes</term>
<term>Line broadening</term>
<term>Photonics</term>
<term>Quantum dot devices</term>
<term>Quantum dots</term>
<term>Rate equation</term>
<term>Semiconductor lasers</term>
<term>Ternary compounds</term>
<term>Threshold current</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Verrouillage injection</term>
<term>Courant seuil</term>
<term>Résonateur Fabry Pérot</term>
<term>Diode laser</term>
<term>Point quantique</term>
<term>Composé ternaire</term>
<term>Gallium Arséniure</term>
<term>Indium Arséniure</term>
<term>Composé binaire</term>
<term>Elargissement raie</term>
<term>Laser semiconducteur</term>
<term>InAs/InGaAs</term>
<term>InGaAs</term>
<term>InAs</term>
<term>As Ga In</term>
<term>As In</term>
<term>0130C</term>
<term>4255P</term>
<term>Equation bilan transfert énergie</term>
<term>Dispositif point quantique</term>
<term>Photonique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This work investigates the linewidth enhancement factor (alpha-factor) and stability of an optically-injected InAs/InGaAs quantum-dot Fabry-Perot laser. Using the injection-locking technique, the above threshold alpha-factor is measured to be as low as 0.6 at 1.3X the threshold current. The below threshold alpha-factor is also measured using the Hakki-Paoli technique. The measured alpha-factor values are used to simulate the dynamic response (stable locking, period-one, period-doubling, or chaos) in the context of single-mode rate equations under zero-detuning injection conditions for external injected power ratios ranging from -11 dB to +1 5dB and slave current bias levels of 1.3X, 2X, and 2.6X threshold. Legacy literature has shown that optically-injected diode lasers typically follow the period-doubling route into a chaotic region as the injection level is increased. Simulations show that at 2X the threshold current, a small region of period-one operation will be observed followed by stable-locking as the injection ratio is increased. This predominantly stable behavior is driven largely by the low alpha-factor. Experimental results support this prediction, where under zero-detuning conditions, only unlocked and stable-locking operation is observed. Experimentally, period-one operation was not observed at a slave laser bias current of 2X threshold, as it was predicted to occur below an external power ratio of -20 dB, a level which was not attainable in this work. Such findings suggest that a quantum-dot device can be employed in an optically-injected configuration for photonic tunable-clock applications.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0277-786X</s0>
</fA01>
<fA02 i1="01">
<s0>PSISDG</s0>
</fA02>
<fA03 i2="1">
<s0>Proc. SPIE Int. Soc. Opt. Eng.</s0>
</fA03>
<fA05>
<s2>7616</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Linewidth Enhancement Factor and Dynamical Response of an Injection-Locked Quantum-Dot Fabry-Perot Laser at 1310nm</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Novel in-plane semiconductor lasers IX : 25-28 January 2010, San Francisco, California, United States</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>POCHET (M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>NADERI (N. A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>TERRY (N.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>KOVANIS (V.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>LESTER (L. F.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>BELYANIN (Alexey A.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>SMOWTON (Peter M.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Center for High Technology Materials, University of New Mexico</s1>
<s2>Albuquerque, NM 87106</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>US Air Force Research Laboratory, WPAFB</s1>
<s2>OH 45433</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>SPIE</s1>
<s3>USA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s2>76160F.1-76160F.12</s2>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA25 i1="01">
<s1>SPIE</s1>
<s2>Bellingham, Wash.</s2>
</fA25>
<fA26 i1="01">
<s0>978-0-8194-8012-5</s0>
</fA26>
<fA26 i1="02">
<s0>0-8194-8012-6</s0>
</fA26>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21760</s2>
<s5>354000174684560090</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>24 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0430704</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Proceedings of SPIE, the International Society for Optical Engineering</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>This work investigates the linewidth enhancement factor (alpha-factor) and stability of an optically-injected InAs/InGaAs quantum-dot Fabry-Perot laser. Using the injection-locking technique, the above threshold alpha-factor is measured to be as low as 0.6 at 1.3X the threshold current. The below threshold alpha-factor is also measured using the Hakki-Paoli technique. The measured alpha-factor values are used to simulate the dynamic response (stable locking, period-one, period-doubling, or chaos) in the context of single-mode rate equations under zero-detuning injection conditions for external injected power ratios ranging from -11 dB to +1 5dB and slave current bias levels of 1.3X, 2X, and 2.6X threshold. Legacy literature has shown that optically-injected diode lasers typically follow the period-doubling route into a chaotic region as the injection level is increased. Simulations show that at 2X the threshold current, a small region of period-one operation will be observed followed by stable-locking as the injection ratio is increased. This predominantly stable behavior is driven largely by the low alpha-factor. Experimental results support this prediction, where under zero-detuning conditions, only unlocked and stable-locking operation is observed. Experimentally, period-one operation was not observed at a slave laser bias current of 2X threshold, as it was predicted to occur below an external power ratio of -20 dB, a level which was not attainable in this work. Such findings suggest that a quantum-dot device can be employed in an optically-injected configuration for photonic tunable-clock applications.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B00A30C</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B40B55P</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Verrouillage injection</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Injection locking</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Enganche inyección</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Courant seuil</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Threshold current</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Résonateur Fabry Pérot</s0>
<s5>11</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Fabry-Perot resonators</s0>
<s5>11</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Diode laser</s0>
<s5>12</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Laser diodes</s0>
<s5>12</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Point quantique</s0>
<s5>47</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Quantum dots</s0>
<s5>47</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Composé ternaire</s0>
<s5>50</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Ternary compounds</s0>
<s5>50</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Gallium Arséniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>51</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Gallium Arsenides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>51</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Indium Arséniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>52</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Indium Arsenides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>52</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Composé binaire</s0>
<s5>53</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Binary compounds</s0>
<s5>53</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Elargissement raie</s0>
<s5>61</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Line broadening</s0>
<s5>61</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Laser semiconducteur</s0>
<s5>62</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Semiconductor lasers</s0>
<s5>62</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>InAs/InGaAs</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>InGaAs</s0>
<s4>INC</s4>
<s5>75</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>InAs</s0>
<s4>INC</s4>
<s5>76</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>As Ga In</s0>
<s4>INC</s4>
<s5>77</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>As In</s0>
<s4>INC</s4>
<s5>78</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>0130C</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>4255P</s0>
<s4>INC</s4>
<s5>91</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Equation bilan transfert énergie</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Rate equation</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Dispositif point quantique</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Quantum dot devices</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Photonique</s0>
<s4>CD</s4>
<s5>98</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Photonics</s0>
<s4>CD</s4>
<s5>98</s5>
</fC03>
<fN21>
<s1>284</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Novel in-plane semiconductor lasers</s1>
<s2>09</s2>
<s3>San Francisco CA USA</s3>
<s4>2010</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003D84 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 003D84 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:10-0430704
   |texte=   Linewidth Enhancement Factor and Dynamical Response of an Injection-Locked Quantum-Dot Fabry-Perot Laser at 1310nm
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024